type
status
date
slug
summary
tags
category
icon
password
Last edited time
Dec 2, 2024 06:03 PM
😀
notion image

📝 主旨内容

现象

  • 2D到3D模型准确度高达99%,反观3D到2D模型准确度仅有85%左右
  • 整个模型根据跨模态的差异进行异常检测,训练数据中只有正常,理论上对正常数据有良好的表示,面对未见的异常数据时自然会产生较大差异
  • 虽然不能很好地说明提升3D到2D模型这块短板能够提升整个模型的性能,但是继续削弱短板,整体性能大幅下降
  • 3D到2D模型在特征层面是降维压缩的过程
  • 2D到3D模型内部其实不需要很多层,可以进行剪枝
  • 2D到3D模型在训练时很快就收敛了
 
木桶原理
木桶原理

GAN改进3Dto2D模型

💡
训练一个分类头,和固定的2Dto3D模型一起组成判别器,去预测是否是真实的2D特征还是经由3Dto2D模型生成的伪2D特征
notion image
notion image

结果

  1. 需要调整的细节很多,暂时未见比原方法更优的性能
notion image

组成两组重构放大差异(一帮一)

💡
将原本两个毫不相干的模型连续起来,一个模型的输出立即当中下一个模型的输入,整体构成了两组重构
notion image

结果

  1. 多计算了两个损失,使得batch_size只能开到2(24GB显存)
  1. 出现过拟合现象,训练集上相似度高,但是测试集的性能未有明显提升
    1. 两组重构250epoch
      Bagel
      Cable Gland
      Carrot
      Cookie
      Dowel
      Foam
      Peach
      Potato
      Rope
      Tire
      Mean
      I-AUROC
      0.992
      0.910
      0.975
      0.995
      0.983
      0.886
      0.977
      0.903
      0.978
      0.901
      0.950
      AUPRO@30%
      0.979
      0.969
      0.982
      0.940
      0.948
      0.967
      0.981
      0.983
      0.974
      0.981
      0.970
      AUPRO@10%
      0.939
      0.910
      0.946
      0.894
      0.849
      0.902
      0.943
      0.948
      0.922
      0.942
      0.920
      AUPRO@5%
      0.880
      0.832
      0.892
      0.839
      0.756
      0.818
      0.886
      0.896
      0.859
      0.884
      0.854
      AUPRO@1%
      0.468
      0.420
      0.483
      0.485
      0.382
      0.405
      0.470
      0.490
      0.460
      0.474
      0.454
      P-AUROC
      0.997
      0.992
      0.998
      0.971
      0.986
      0.994
      0.998
      0.998
      0.998
      0.997
      0.993
      cos_sim_2Dto3D
      0.989
      0.987
      0.987
      0.985
      0.988
      0.983
      0.988
      0.989
      0.982
      0.982
      0.986
      cos_sim_3Dto2D
      0.825
      0.892
      0.831
      0.802
      0.893
      0.818
      0.818
      0.827
      0.884
      0.873
      0.846

改进——减少整体训练的参数,针对性训练

notion image
  1. 先单独训练好剪枝后的2D到3D模型并保存,之后只训练3D到2D模型(固定2D到3D模型,batch_size恢复成4)
  1. 每个Epoch内都在测试集上测试一遍,取表现最好的模型
2D到3D模型收敛轮数
Bagel
Cable Gland
Carrot
Cookie
Dowel
Foam
Peach
Potato
Rope
Tire
最后三轮标准差小于0.0005
8(0.9888)
10(0.9823)
10(0.9897)
6(0.9856)
11(0.9867)
12(0.9802)
9(0.9893)
7(0.9887)
7(0.984)
6(0.9753)
最后三轮标准差小于0.0003
8(0.9888)
14(0.9839)
10(0.9897)
6(0.9856)
11(0.9867)
14(0.9808)
9(0.9893)
18(0.9906)
10(0.9851)
9(0.9764)
notion image
2D到3D模型收敛轮数
CandyCane
ChocolateCookie
ChocolatePraline
Confetto
GummyBear
HazelnutTruffle
LicoriceSandwich
Lollipop
Marshmallow
PeppermintCandy
最后三轮标准差小于0.0003
9(0.9905)
5(0.9911)
5(0.9904)
5(0.9930)
5(0.9908)
5(0.9812)
5(0.9891)
5(0.9914)
5(0.9926)
5(0.9932)
 
两组重构改进50epoch
Bagel
Cable Gland
Carrot
Cookie
Dowel
Foam
Peach
Potato
Rope
Tire
Mean
I-AUROC
0.991
0.858
0.985
0.994
0.981
0.842
0.935
0.921
0.994
0.810
0.931
AUPRO@30%
0.979
0.958
0.982
0.938
0.938
0.958
0.979
0.982
0.972
0.972
0.966
AUPRO@10%
0.939
0.876
0.946
0.892
0.820
0.880
0.936
0.945
0.917
0.916
0.907
AUPRO@5%
0.881
0.775
0.892
0.837
0.718
0.795
0.874
0.890
0.848
0.844
0.835
AUPRO@1%
0.466
0.376
0.483
0.471
0.362
0.392
0.444
0.475
0.444
0.426
0.434
P-AUROC
0.997
0.988
0.998
0.969
0.983
0.991
0.997
0.998
0.998
0.993
0.991
cos_sim_2Dto3D
0.989
0.981
0.987
0.983
0.985
0.980
0.988
0.989
0.981
0.976
0.984
cos_sim_3Dto2D
0.823
0.873
0.835
0.800
0.887
0.813
0.811
0.835
0.878
0.866
0.842
notion image
notion image
notion image
notion image
notion image
notion image
notion image
notion image
notion image
notion image
两组重构改进(优化器参数少,best逻辑)250epoch
Bagel
Cable Gland
Carrot
Cookie
Dowel
Foam
Peach
Potato
Rope
Tire
Mean
I-AUROC
0.998
0.864
0.990
0.998
0.988
0.861
0.954
0.941
0.994
0.873
0.946
AUPRO@30%
0.979
0.959
0.982
0.939
0.936
0.963
0.980
0.982
0.972
0.974
0.967
AUPRO@10%
0.939
0.879
0.946
0.891
0.814
0.889
0.941
0.946
0.917
0.922
0.908
AUPRO@5%
0.881
0.787
0.893
0.835
0.710
0.801
0.883
0.893
0.847
0.851
0.838
AUPRO@1%
0.467
0.385
0.488
0.477
0.357
0.399
0.465
0.423
0.445
0.439
0.435
P-AUROC
0.997
0.988
0.998
0.969
0.982
0.992
0.998
0.998
0.998
0.994
0.991
cos_sim_2Dto3D
0.988
0.986
0.986
0.983
0.983
0.979
0.989
0.989
0.981
0.975
0.984
cos_sim_3Dto2D
0.824
0.835
0.792
0.792
0.887
0.816
0.817
0.830
0.877
0.871
0.834
notion image
notion image
notion image
notion image
notion image
notion image
notion image
notion image
notion image
notion image
 
notion image
两组重构改进(优化器参数少,best逻辑)360epoch,2dto3d调优
Bagel
Cable Gland
Carrot
Cookie
Dowel
Foam
Peach
Potato
Rope
Tire
Mean
I-AUROC
0.998
0.911
0.990
0.998
0.988
0.904
0.968
0.941
0.994
0.933
0.963
AUPRO@30%
0.979
0.965
0.982
0.939
0.936
0.966
0.981
0.982
0.972
0.979
0.968
AUPRO@10%
0.939
0.897
0.946
0.891
0.814
0.899
0.943
0.946
0.917
0.938
0.913
AUPRO@5%
0.881
0.809
0.893
0.835
0.710
0.812
0.886
0.893
0.847
0.879
0.845
AUPRO@1%
0.467
0.404
0.488
0.477
0.357
0.403
0.470
0.423
0.445
0.466
0.440
P-AUROC
0.997
0.991
0.998
0.969
0.982
0.993
0.998
0.998
0.998
0.997
0.992
cos_sim_2Dto3D
0.988
0.985
0.986
0.983
0.983
0.984
0.990
0.989
0.981
0.981
0.985
cos_sim_3Dto2D
0.824
0.888
0.792
0.792
0.887
0.816
0.816
0.830
0.877
0.866
0.839
notion image
notion image
notion image
notion image
notion image

创新点

  1. 提出异构多任务跨模态映射异常检测框架
  1. 精度高
  1. 轻量,推理快,占用小
  1. 改进训练方式,训练时间短,只需要原来训练轮数的15%

多视角融合避免3Dto2D特征压缩

💡
将点云逐步旋转后上色,可以得到多个不同视角的下的RGB图像,并且附带了丰富的纹理细节
💡
特征融合模块,可以尝试用简单的全连接,卷积,注意力
notion image
 

🤗 总结归纳

对框架做出调整而非模型

💡
简单来说,3Dto2D,2Dto3D模型并没有限定用哪种特定的结构,可以替换成各种模块

📎 参考文章

 
CFM的踩坑指南DREAM: Dual Reconstruction and Efficient Asymmetric Mapping for Multimodal Industrial Anomaly Detection
Loading...